KSIMath

This document gives the proofs of the various mathematical statements made in the Krishna Software’s 2022 Newsletters.  First newsletter is entitled: “There Are Better Algorithms To Deal With Coronavirus Than Vaccination!” and is be referred to as newsletter A in this document. The second newsletter’s math proofs is be referred to as newsletter B in this document.  Some of these proofs are common knowledge but we prove them here again for completeness sake and where possible present a simpler version of the proof so they do NOT rely on other theorems or complex mathematical equations that themselves need proving more than what we are trying to prove here.  Also, we do not want the reader searching elsewhere and lose focus on the deductive logic presented here.  There’s a lot of “garbage” out there and some of the stuff is NOT based on deductive logic but just speculative or someone’s belief.  For example, there are  some articles on the web that states that primes are in the form of 6n+1 or 6n-1 where n is a natural number.  Then they go on to determine if a number is prime by trying to put it into the form of 6n-1 or 6n+1.  This is hogwash.  Although primes can be put in the form of 6n-1 or 6n+1, it does not follow that because a number can be put in that form, it’s prime.  This is easy to disprove since 77 is 6*13-1 and 49 is 6*8+1 and neither 77 nor 49 are prime.  Proofs presented later in this document may refer to proofs presented earlier in this document.  All numbers referred to by variables M, N, P, Q, i, j, k, l, m, n, p, q and di are natural numbers 0, 1, 2, 3, 4, 5, etc.  General math proofs where numbers are going to infinity assume the number is at least two digits (i.e., greater than 9) unless explicitly stated otherwise.
Proofs related to Article I of Newsletter A: Do Not Blame God For Your Problems!
Part I:   We first prove that testing divisibility of some important primes (2, 3, 5, etc.) and finding the remainder can be reduced to essentially summing of the digits and examining the divisibility of a much simpler number.  We also wrote a proposition for processor makers like Intel how they can implement modulo instructions into their processors in an extension of their instruction set and do the divisibility check or remainder calculations in less than five cycles using parallel processing capability of modern 64-bit multi-core processors.  This proposition is given in a separate document MicroPNX.DOC.  There is a lack of modulo arithmetic in modern processors that programmers end up using a division and/or multiply instruction which is much more computationally expensive than employing a modulo algorithm.  As presented in MicroPNX.DOC, a modulo algorithm can be optimized for computers so it runs much faster than performing a division or multiplication.  Here we examine some simple algorithms for finding remainders and whether a number is divisible by some frequently used prime numbers-- 2,3,5,11,37, etc. involving base 10 (decimal) so it’s faster for humans than performing a division or multiplication.  Let N be the number that we want to test for divisibility by p.  We can write any number N by writing it as the sum of its digits (di) multiplied by their respective power of ten according to their weight (position):

N = d0 + d1*10 + d2*102 + d3*103 + d4*104 + d5*105 + … + di*10i.

Here d0 is the least significant digit and the number of digits in the number is i+1, we can add extra digits if needed and set those values of di to zero as leading zeros in a number do not affect the value of a number.

(a) Testing divisibility of N by 2 or checking if N is even:  to see if the number is even or divisible by 2, we only have to check the first digit (d0).  All the other digits are being multiplied by a power of 10 (10i) and 10 is 5*2 so atleast one factor of 2 is present in all the other terms.  If d0 is 0, 2, 4, 6, or 8, it’s even and it’s divisible by 2.  Two (2) is the only even prime number; 4,6,8,10,12,14, etc. up to infinity are all divisible by 2 and not prime.  Another way to look at it is that the Mth even number is 2M where M=1,2,3,4,.. infinity.  So the 8th even number is 2(8)=16.  Since 2 is always a factor of 2M, it’s always divisible by 2.
(b) Testing divisibility of N by 3: to reduce complexity of the division, we can remove terms from N that are already (evenly) divisible by 3.  For example, 10*d1 can be written as 9*d1+d1 where 9*d1 is already divisible by 3.  Similarly,  d2*102 can be written as 99*d2+d2 where 99*d2 is already divisible by 3.   In general, any number of repeating “9”s (or “3”s) is divisible by 3 up to infinity and subtracting 1 from any power of 10 greater than 1 will give us all repeating “9”s.

Therefore we can rewrite N to maximize the number of “9”s without altering its value :

N = d0 + 9*d1+d1 + 99*d2+d2 + 999*d3+d3 + 9999*d4+d4 + … + (10i -1)*di+di.
All the terms with a factor of repeating “9” are divisible by 3 so we remove the terms that are divisible by 3 and are left with a new number M:

M = d0 + d1 + d2 + d3 + d4 + d5 + … + di.
So any number N is divisible by 3 if the sum of it’s digits (M) is divisible by 3.  It’s essentially the same proof for divisibility by 9; if the sum of the digits are divisible by 9 then the entire number is divisible by 9.  Note that the sum of the digits M is also subject to the same rule so this process can be applied recursively until the sum of the digits and division by three is a trivial mental exercise.  For example, to check if 4,294,967,297 is divisible by 3, we see that the sum is 59.  If we divide 59 by 3, we get remainder of 2.  If 59/3 was too difficult to calculate, we can simplify it further by recursively applying the same rule to M and see that 59 has digits which sum to 14 and 14/3 gives us remainder of 2 (same answer).  If 14/3 was too difficult to calculate, we can simplify it further by applying the rule a 3rd time and see that 14 has digits which sum to 5 and 5/3 gives remainder 2 which is again the same answer. 
(c) Testing divisibility of N by 5:  we can do similar proof as (b) above where we remove terms that are already divisible by 5 and in this case all powers of 10, one and up are divisible by 5 so we are left with just examining the first digit d0 to see if it’s divisible by 5.  Therefore a number N is evenly divisible by 5 if and only if d0 is 0 or 5.  Another way to prove it is to see that all numbers that end in zero (0) can be written as 10(N/10) where the 10 is factored out of N so 2340 can be written as 10*234 and 10 is always divisible by 5. All numbers that end in 5 can be written so 10 is factored out by first subtracting 5 and then adding it back after factoring out the 10 so 8465 can be written as 8460+5 = 10*846+5 so in general 10*((N-5)/10)+5 where 5 is a factorable so we get 5*(2*((N-5)/10)+1).  So any number that ends in 5, a 5 can be factored out leaving an integer as the other factor.  
(d) Testing divisibility of a number N by 11:  we can pair up the digits of N as follows without altering it’s value:
N = d0+d1*10 + (d2+d3*10)*102 + (d4+d5*10)*104 + (d6+d7*10)*106 + … + (di-1+ di*10)*10i-1
In order to pair the digits, the total number of digits (i+1) must be even and this can be accomplished by adding a leading “0” if needed to the number which does not affect it’s value.  Any even power of 10 is divisible by 11 leaving a remainder of 1; for example, 100 = 11*9+1; 10,000 = 11*909+1; 1,000,000 = 11*90909+1; … 10i-1 = 11*((10i-1-1)/11)+1.  Therefore, divisibility by 11 is simply seeing if the sum of each pair is divisible by 11.  For example, 1001 is divisible by 11 since 10+01 = 11 which is divisible by 11.   It’s easy to remember that the only two digit numbers divisible by 11 are the repeating numbers: 00, 11, 22, 33, 44, 55, 66, 77, 88, and 99.  So to find the remainder of 76507/11, we would simply sum up the pairs: M = 07+65+07 = 79 and see that 79 is 2 away from 77 so remainder is 2.  Here we are keeping everything positive but we can also use negative numbers too if it helps to make things easier.  In this case 65 is 1 less than 66 which is divisible by 11 so 07-01+07 = 13 which is 2 more than 11 so remainder is 2.  If sum ends up negative, just add 11.  Using same number we can see that 07 is 4 behind 11 so we get sum of -04-01-04 = -09 so remainder of -09 is same as -09+11 = 2.  Like in the case for divisibility by 3 in part I-b, one can recursively apply this rule to the sum of the pairs (M) if M is still too complex for someone to divide by 11 or if we don’t mind adding negative numbers, we can simplify N to include negative numbers without altering its original value:

N = d0 + 11*d1-d1 + 99*d2+d2 + 1001*d3-d3 + 9999*d4+d4 + 100001*d5-d5 + 999999*d6+d6 + … + (10i-1-1)*di-1+di-1 + (10i+1)*di-di
Here all the terms with di where i is even will be positive and terms where i is odd will be negative.  All the terms with repeating even number of 9s are divisible by 11 and all the terms where i is odd become divisible by 11 once we add 1 to 10i.
(e) Testing divisibility of a number N by 7,  we can pair up the digits of N as follows without altering it’s value:

N = d0+d1*10 + (d2+d3*10)*102 + (d4+d5*10)*104 + (d6+d7*10)*106 + … + (di-1+ di*10)*10i-1
Now we see that 102 is 14*7+2 and since 14*7 is always evenly divisible by 7 we can reduce the 2nd pair to (d2+d3*10)*2.  Third pair has 104 which is 1428*7+4.  Fourth pair has 106 which is 142857*7+1 and the factors to multiply the pairs repeats as 1,2,4,1,2,4, etc.  If we know all the pairs that are divisible by 7 namely 00, 07, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, and 98, we can just sum up the differences between the pair and the closest number divisible by 7 and multiply by the factor 1,2, or 4.  For a computer this can be done quickly since multiply by 1,2, and 4 is just a shift left of the number.  The shift is a built-in instruction in all modern computer processors.  This may not be easy for an untrained human, so we can use a different way of grouping the digits.  We can use similar algorithm as one above for divisibility by 11 in part I-d to test divisibility by other numbers like 137, 73, 13, 7, etc.  For example, 7*11*13 = 1001 so we can test divisibility by 1001 or 111111 since 111111 = 111*(1001) = 37*3*(7*11*13).  Similarly, 137*73 = 10001 so we can test divisibility by 10001 or 11111111 and we know that this is equal to 1111*(10001) = 1111*(137*73) = 11*101*(137*73).

(f) Testing divisibility of N by 37:  we can easily check for divisibility by 111 and derive divisibility of 37 from the remainder of dividing by 111.  This is because 111=37*3.  We can group the digits of N as triplets as follows without altering it’s value:

N = d0+d1*10+d2*100 + (d3+d4*10+d5*100)*103 + (d6+d7*10+d8*100)*106 + (d9+d10*10+d11*100)*109 + … + (di-2+ di-1*10+di*100)*10i-2
In order to get triplets for all the digits, the total number of digits (i+1) must be a multiple of three and we can force this to be true by adding one or two leading “0”s if needed to the number which does not affect it’s value.  Any three digit number is divisible by 111 if it’s repeating digits 000, 111, 222, 333, 444, 555, 666, 777, 888, and 999.  Every power of 10 that’s a multiple of 3 is divisible by 111 leaving a remainder of 1; for example, 1000 = 111*9+1, 1000000 = 111*9009+1, … 111*((di-2-1)/111)+1.  For example, if we wanted to know remainder of 232/111, we would write 004,294,967,296 so we have i=0..11 which is a total of 12 digits.  Therefore total number of digits is divisible by 3.  Add up remainders for each triplet from multiples of 111 so we get: 4+72+79+74 = 229.  Since remainder of 229 is higher than the divisor 111 we can recursively apply finding remainder of dividing by 111 to this triplet 229 and we see that it is 7 away from 222.  Therefore, remainder is 7.     
Once we have the remainder of R=N/111 we can find R’=N/37 by knowing that the quotient (Q) attained by N/111 will also be quotient of N/37 multiplied by 3:

N/111 = R/111 + Q      
;N, Q, and R are natural numbers (no decimals)

N = R +  111Q


;multiply both sides by 111
N = R + 37*(3*Q)           
;Treat 3Q as new quotient and we have division by 37

Now the remainder is 0..110 so it may add up to 2 to the quotient and new remainder will be remainder of old divisor divided by 37.  R’=R+37Q.  In our example above, R=7 so we get R’=7+37Q.  So remainder of 232/37 is also 7.  Note if N=231, then 2,147,483,648/111 gives remainder 59 since it’s 2+36+39-18=59.  So R’=59+37Q.  Since R is greater than our divisor (37), we can subtract 37 from 59 and get R’=22 (and increase Q by one).  In general, if we have R=N/(p*a) then whatever quotient we get for p*a dividing N then obviously p divides N and a divides N by adjusting the quotient (Q) without affecting the remainder R.  Note that the opposite is not necessarily true; i.e., if p divides N and a divides N, it does NOT follow that p*a also divides N unless both p and a do not share same prime factors.   For example, N=117, p=13, a=39.  Here N/p = 9 and N/a = 3 but (p*a) does not divide evenly into N.  So, division by p and a can be obtained by result of dividing by p*a by increasing the quotient (Q) without affecting the remainder R:
N/(p*a) = R/(p*a) + Q   
;definition of division of N by two variables (p,a)

N = R + p*a*Q          
;multiply both sides by (p*a) and R is for residual of N/(p*a)
N = R + p*(a*Q)    
;R = R/p  (modify R and new quotient is a*Q for N/p)




;p repeats a times for every Q

N = R + a*(p*Q)       
;R = R/a (modify R and new quotient is p*Q for N/a)
 


;a repeats p times for every Q
New remainder remains unchanged if original R<p (for N/p) or original R<a (for N/a).

(g) To test if a number N is divisible by 11, 101, we perform test for divisibility by 1111 and derive divisibility of 11 and 101 from the remainder of dividing by 1111.  Note that 1111=11*101.  We can group the digits of N as quadruplets as follows without altering it’s value:

N = d0+d1*10+d2*100+d3*1000 + (d4+d5*10+d6*100+d7*1000)*104 + (d8+d9*10+d10*100+d11*1000)*108 + (d12+d13*10+d14*100+d15*1000)*1012 + … + (di-3+ di-2*10+ di-1*100+di*1000)*10i-3
In order to get quadruplets for all the digits, the total number of digits (i+1) must be a multiple of four and we can force this to be true by adding one, two, or three leading “0”s if needed to the number which does not affect it’s value.  Any four digit number is divisible by 1111 if it’s repeating digits 0000, 1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, and 9999.  Every power of 10 that’s multiple of 4 is divisible by 1111 leaving a remainder of 1; for example, 10000 = 1111*9+1, 100000000 = 1111*90009+1, … 1111*((di-3-1)/1111)+1.  For example, if we wanted to know remainder of 232/1111, we would write 0042,9496,7296 so we have i=0..11 which is a total of 12 digits.  Therefore total number of digits is divisible by 4.  Now find the deltas (differences) between the digits from the closest 4-digit repeats and sum them up.  We get 42-503+630=169.  If the sum of the deltas was negative, we can just add 1111 to get a positive remainder.
Part II: Three consecutive odd numbers cannot be all prime.  This is true for odd numbers greater than 7.  Obviously, 3, 5, and 7 are 3 consecutive odd numbers that are all prime.
For any odd number k where k>7, the three consecutive odd numbers will be k, k+2 and k+4.  When we divide k by a number N, then any remainder is 0..N-1.  If remainder was N or higher then we could subtract another N from k (further divide k).  If the remainder is 0, then N evenly divides k or N is an integer multiple of k.  So one way to prove that three consecutive odd numbers cannot be all prime is we put every possible remainder when we do k/3, (k+2)/3, and (k+4)/3 into a table:
	k/3
	0
	1
	2

	(k+2)/3
	2
	0
	1

	(k+4)/3
	1
	2
	0


Row #1 is the remainders for k/3—0, 1, or 2.  Row #2 is dependent on the remainder of k/3.  If k/3 has remainder 0 then (k+2)/3 must have remainder 2 and (k+4)/3 must have remainder 1 and so on.  So the table confirms that there is always an odd number divisible by 3 in any three consecutive odd numbers.  Therefore, three consecutive odd numbers cannot be all prime.  To test this algorithm with an example, take 1789, 1791, 1793.  Using our proof of divisibility by 3 as given in Part I-b above we can just sum up the digits and get: 25, 18, and 20.  Since 18 is divisible by 3 so is 1791; therefore 1791 at least is not prime.  [You can use divisibility test of 11 given in Part I-d and see that 1793 is divisible by 11 so we have found 2 non-prime numbers.]
There are other ways to prove that 3 consecutive odd numbers cannot be all prime.  Let’s look at one more proof:  three consecutive odd numbers are followed by 3 consecutive even numbers so we can divide the numbers into groups of 6.  So the kth group of 6 would be 6k where k=1..infinity.  So the 3 odd numbers would be 6k-1, 6k+1, and 6k+3.  We do not have to look at 6k+5 since that would just be the next k (next group) 6(k+1)-1, 6(k+1)+1, and 6(k+1)+3.  Now we can always factor out the “3” from 6k+3 and therefore have an odd number divisible by 3 in every group of 6 from 1 to infinity.  Although it overlaps with the previous k group, we can go back to 6k-3 and see that this also always has a factor of 3.  So any two consecutive odd numbers 6k-1, 6k+1 is sandwiched by an odd number 6k-3 and 6k+3 both of which are divisible by 3.  Thus, any prime number has to be in the form of 6k-1 or 6k+1 since they are sandwiched by two odd numbers that are not prime.
Part III: L(n) = 0..90..9..n-1 is inductively non-prime; it cannot be fully proven to be non-prime whereas L’(n)= 9..09..0..n-1 can be shown deductively to be all non-prime numbers.  Let’s start off by taking a few examples: 
L(1)=0;

L(2)=01;

L(3)=012 = 4*3, 
L(4)=0123 = 41*3, 
L(5)=01234 = 2*617, 
L(6)=012345 = 3*5*823, 
L(7)=0123456 = 26*3*643, 
L(8)=01234567 = 127*9721, 
L(9)=012345678 = 2*3*3*47*14593, 
L(10)=0123456789 = 3*3*3607*3803, 
L(11)=01234567890 = 10*L(10) = 5*2*3*3*3607*3803, 
L(12)=012345678901 = 857*14405693, etc.  
For all L(n) that are even numbers like L(3), L(5), L(7), L(9), L(11), etc. we know they are not prime because they are divisible by 2 (as proven in Part I-a).  For all numbers L(n) that end in 0 or 5, they are divisible by 5 at least so they are not prime (proven in Part I-c).  For all numbers L(n) that end in 3 or 9, they are divisible by 3 or/and 9 since using the proof above from Part I-b that if the sum of the digits are divisible by 3 or 9 then the number is divisible by 3 and/or 9.  The sum of digits for example in L(4) is 0+1+2+3 = 6 and sum of digits in L(10) is 45.  Any multiple of 10 for L(n) would give us a sum as a multiple of 45 so L(10n) = 45n and 45n is always divisible by 9 and 3 for n going from 1 to infinity.  Similarly, sum of L(4), L(14), L(24), etc. would give us a sum of 45n+6 and we can factor out the 3 from this.  Thus all L(10n+4) are divisible by 3 for n going from 0 to infinity.  Numbers ending in “1” and “7” like L(2), L(8), L(12), L(18) cannot be proven to be non-prime for all numbers ending in “1” and “7” going to infinity.
For L’(n) = 9876543210987…09..n-1 can be shown to be non-prime deductively for all n going from 1..infinity.  Let’s start off by taking a few examples: 

L’(1)=9 = 3*3,

L’(2)=98 = 7*7*2,

L’(3)=987 = 47*3*7, 

L’(4)=9876 = 823*3*2*2, 

L’(5)=98765 = 19753*5, 

L’(6)=987654 = 1697*97*3*2, 

L’(7)=9876543 = 14503*227*3, 

L’(8)=98765432 = 333667*37*2*2*2, 

L’(9)=987654321 = 379721*17*17*3*3, 

L’(10)=9876543210 = 10*L(9)=379721*17*17*5*3*3*2, 

L’(11)=98765432109 = 31687*1723*67*3*3*3, 

L’(12)=987654321098 = 265355809*1861*2, etc.  

Here we see that L’(1), L’(3), L’(7), and L’(9) have digits that sum to a multiple of 3 so using proof in Part I-b, if the sum of the digits is a multiple of 3 then that number is divisible by 3 and thus not prime.  L’(2), L’(4), L’(6), L’(8), L’(10), etc. are all even numbers and thus divisible by 2 and thus not prime (see also proof in Part I-a).  L’(5) and L’(10) are both multiples of 5 and thus not prime (see also proof in Part I-c).  The numbers repeat after L’(10) so that L’(11)=98765432109 where the sum of digits is 45+9 and L’(21) has sum of digits equal to 2*45+9 and in general L’(10n+1) has a sum of digits of 45n+9 and 3 is always a factor of 45n+9 = 3(15n+3).  Similarly, L’(10n+3) has a sum of 45n+24 and L’(10n+7) has a sum of 45n+42 and L’(10n+9) has a sum of 45n+45 and in all of these a 3 can be factored out so they are divisible by 3.  L’(10n+5) = 45n+35 and thus a 5 can be factored out so this is always divisible by 5; 45n+35 = 5(9n+7).  All the remaining numbers L’(10n+2), L’(10n+4), L’(10n+6), and L’(10n+8) are divisible by 2 as last digit is even.
Proofs related to Article II of newsletter A: There Are Better Algorithms To Deal With Coronavirus Than Vaccination!
  Working with infinite sets and how nothing is lost by taking away things from the infinite.  We can prove various statements of Srimad-Bhagavatam like SB 3.28.15 which clearly states everything minus everything = everything.  Also, using concepts of infinity we can prove various statements in scriptures about God being inexhaustible (avyayam).  And continuing with the analogy of infinity, anything against the infinite (God) has no value and is a negative asset:
1-infinity = -infinity or is a negative regardless of the constant used: k-infinity = -infinity.

  On a similar note, people who just speculate various theories and follow them as if they “might” be right are wasting their time since anybody can speculate any theory so there are millions and millions of concoctions possible to explain something therefore the probability that someone guessed right is 1/1000000 or 1/c where is the number of concoctions/combinations possible to explain the event.  This is near zero and that’s assuming the truth is one of the possible explanations available.  Then they build other theories on top of the theory assuming they got it right or guessed right.  So in the limit of layers of theories where n is the layer number we have the limit of n approaching infinity: 
lim (1/c)n = 0

  So if they keep speculating, they will not arrive at the truth.  If we grant that there is more than one correct solution—say k solutions to a given problem then the probability of guessing correctly is still zero as k<<c (k is much less than c) so as n approaches infinity:

lim (k/c)n = 0

  It still goes to zero.  Even “educated” guesses based on induction like Fermat did with his equation for primes Fn = 22^n+1 which was considered 100% correct as they only examined n for small values actually becomes the opposite if no other Fermat prime is found.  If we take the limit of n approaching infinity, then the so-called equation for prime is actually an equation for numbers that are NOT prime.  The few exceptions where the equation yields a prime (for n=0..4) are flukes.   
Proofs related to Article III of newsletter A: Nothing Is “Random”!

To find relationship of given data: 159, 897, 846, 832, 884, 939, etc.  using a best fit linear equation and an exact equation.

Part I:  The Best fit linear equation involves minimizing the error between points obtained from the equation y=mx+b and the actual data.  We can arbitrarily set x=0..5 for the 6 points given (N=6).  The error function E(m,b) is the sum of the distances between the actual data and the data obtained from the equation:

SUM(i=0..N-1) {  E(m,b) = [yi-(mxi+b)]2 }
[can’t seem to get summation sign with limits and partial derivative signs and equation inside in this doc file; to be continued…]
Part II:
Part III: 
Proofs related to Article I of Newsletter B: 
This article is not yet published.

Proofs related to Article II of Newsletter B: 
This article is not yet published.

Proofs related to Article III of Newsletter B: 
This article is not yet published.

